Introduction

In high performance analog circuit, it is a very challenging task to design a high performance complementar y metal oxide semi-conductor, which is used in either ADC or DAC. As we are dealing with high performance circuit, to meet these requirement both accuracy and fast settling of system is needed, OP-Amp with high DC gain frequency can satisfy both of these requirement. Although a Op-amp with high DC gain satisfy these requirement, but still in many aspects which leads to complementary demands, as the intrinsic gain of many devices are limited.

OTA is an Op-amp without an output driver. It is capable of driving small capacitive load. These makes OTA a well suitable for pipeline application. The whole procedure is focused on the development of ultra low power amplifier requiring low silicon area but been able to drive high capacitive load.

BIPOLAR VS. MOS TRANSISTORS

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>BIPOLAR</th>
<th>CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on Voltage</td>
<td>0.5-0.6 V</td>
<td>0.8-1 V</td>
</tr>
<tr>
<td>Saturation Voltage</td>
<td>0.2-0.3 V</td>
<td>0.2-0.8 V</td>
</tr>
<tr>
<td>(g_m) at 100(\mu)A</td>
<td>4 mS</td>
<td>0.4 mS (W=10L)</td>
</tr>
<tr>
<td>Analog Switch Implementation</td>
<td>Offsets, asymmetric</td>
<td>Good</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Moderate to high</td>
<td>Low but can be large</td>
</tr>
<tr>
<td>Speed</td>
<td>Faster</td>
<td>Fast</td>
</tr>
<tr>
<td>Compatible Capacitors</td>
<td>Voltage dependent</td>
<td>Good</td>
</tr>
<tr>
<td>AC Performance Dependence</td>
<td>DC variables only</td>
<td>DC variables and geometry</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Noise (1/f)</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Noise Thermal</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>< 1 mV</td>
<td>5-10 mV</td>
</tr>
</tbody>
</table>

The basic comparison between BJT and CMOS is shown in above table.
THE ANALOG IC DESIGN PROCESS

The operational transconductance amplifier (OTA) is an amplifier whose differential input voltage produces an output current. Thus, it is a voltage controlled current source (VCCS). There is usually an additional input for a current to control the amplifier's transconductance. The OTA is similar to a standard operational amplifier in that it has a high impedance differential input stage and that it may be used with negative feedback.
The basic block diagram of operational transconductance amplifier can be given as:-

From the above diagram we can see that it is basically made up of 3 major blocks, viz. load block, diff-amp and current mirror circuit. Now we will see each block in detail.
Related Theory:

Symbol representation of transistor

![Diagram of transistor symbols and explanations](image-url)
There are three basic configurations of IC MOSFET amplifiers.

(i) COMMON SOURCE:-

Benefits of using CMOS CS Amplifier
1. Large input impedance
2. Low output impedance
3. Large small signal voltage gain.
(ii) COMMON GATE

Benefits of using CMOS CG Amplifier
1. Input resistance is low
2. Output resistance is high
3. Current gain is unity.

(iii) COMMON DRAIN

Benefits of using CMOS CG Amplifier
1. Unity voltage gain
2. Low output resistance
3. It is also used as a voltage buffer
From the above three configuration the configuration which meet our requirement is common source amplifier. Hence, in our project we are going to use common source CMOS configuration in each and every circuit.

Now we will discuss each and every block of OTA in detail.

1. **Active load block:-**

 In this there are basically two types of loads, viz. resistive load and diode load.

 (i) **Resistive load**

 ![Resistive Load Diagram](image)

 The voltage gain of the above circuit can be given as $A_v = (-g_m \times R_D)$

 When a circuit makes use of a resistance as a load this is called passive load. Passive load is the resistance which consumes power proportional to R the value of load which we are using, this is a passive load.
(ii) Active load

MOS ACTIVE RESISTORS

Realizations

When the drain is connected to the gate, the transistor is always saturated.

\[v_{DS} \geq v_{GS} - V_T \]
\[v_D - v_S \geq v_G - v_S - V_T \]
\[\therefore v_{DG} \geq -V_T \text{ where } V_T > 0 \]

Large Signal

\[i = i_D = \left(\frac{K W}{2L} \right) \left[v_{GS} - V_T \right]^2 \]
\[= \frac{B}{2} \left(v_{GS} - V_T \right)^2, \text{ ignore } \lambda \]

or

\[v = v_{DS} = v_{GS} = V_T + \sqrt{\frac{2i_D}{B}} \]

Small signal

If \(V_{BS} = 0 \), then \(R_{OUT} = \frac{v}{i} = \frac{1}{g_M + g_{DS}} \approx \frac{1}{g_M} \)

The voltage gain can be given as \(Av = -\frac{g_m1}{g_m2} \)

In this we are ignoring bulk transconductance.

Active load:- when resistor is replaced by an active device which acts as a resistor then this is called active load.

Besides power saving there is additional advantage, because today very large number of circuits are actually in integrated circuit form, in integrated circuits remember one thing that creating one for example, in a unit one mosfet and one resistance is more expensive and it will take more
steps for fabrication then two resistors. That means, if we can replace this resistance by a mosfet then the circuit will take two mosfets, but making of two mosfets are in fact, just multiplying in some component is much more economical and convenient in a integrated circuit rather than creating a different element all together resistance and mosfet two are very different elements and two mosfets they are belong to the same category and hence their construction is very simple and more economical.

2. **Diff-amp block:**

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs V_{in}^+ and V_{in}^- and one output V_{out} in which the output is ideally proportional to the difference between the two voltages

$$V_{out} = A(V_{in}^+ - V_{in}^-)$$

where A is the gain of the amplifier.

The differential pair (differential amplifier) configuration

- Widely used building block in analog integrated circuit design
 - Performance depends critically on the matching of the devices
 - Utilizes more components than single-ended circuits
 - Well suited for IC fabrication
- Advantages of using differential pair
 - Less sensitive to noise and interference than single-ended circuits
 - Bias is provided without the need for bypass and coupling capacitors
Definition of a Differential Amplifier

\[
v_{\text{OUT}} = A_{VD}(v_1 - v_2) \pm A_{VC}\left(\frac{v_1 + v_2}{2}\right)
\]

Differential voltage gain = \(A_{VD}\)
Common mode voltage gain = \(A_{VC}\)
Common mode rejection ratio = \(\frac{A_{VD}}{A_{VC}}\)
Input offset voltage = \(V_{OS(\text{in})} = \frac{V_{OS(\text{out})}}{A_{VD}}\) (2-10mV)
Common mode input range = \(V_{ICMR}\) \((V_{SS}+2V<V_{ICMR}<V_{DD}-2V)\)
Power supply rejection ratio = \((\text{PSRR})\)
Noise
VI.2-1 - CMOS DIFFERENTIAL AMPLIFIERS

N-Channel Input Pair Differential Amplifier

![Diagram of a CMOS differential amplifier]

- V_{DD}
- V_{SS}
- V_{G1}
- V_{G2}
- V_{GS1}
- V_{GS2}
- i_{D1}
- i_{D2}
- i_{D3}
- i_{D4}
- i_{OUT}
- v_{OUT}
Large Signal Analysis of CMOS Differential Amplifiers

1. $v_{ID} = v_{GS1} - v_{GS2} = \sqrt{\frac{2iD1}{\beta}} - \sqrt{\frac{2iD2}{\beta}}$

2. $I_{SS} = iD1 + iD2$

Solving for $iD1$ and $iD2$ gives,

3. $iD1 = \left(\frac{I_{SS}}{2}\right) + \left(\frac{I_{SS}}{2}\right)v_{ID}\sqrt{\frac{\beta}{I_{SS}} - \frac{\beta^2 v_{ID}^2}{4I_{SS}^2}}$

And

4. $iD2 = \left(\frac{I_{SS}}{2}\right) - \left(\frac{I_{SS}}{2}\right)v_{ID}\sqrt{\frac{\beta}{I_{SS}} - \frac{\beta^2 v_{ID}^2}{4I_{SS}^2}}$

Where $v_{ID} < 2\sqrt{\frac{I_{SS}}{\beta}}$

$g_m = \frac{\partial iD1}{\partial v_{ID}} = \sqrt{\frac{\beta I_{SS}}{4}}$

![Graph of iD1 and iD2 against vID and I_{SS}/\beta]
Transconductance Characteristics of the Differential Amplifier Circuit

Simulation Results
CMOS DIFFERENTIAL AMPLIFIER

Small Signal Differential Mode Gain

N-Channel input differential amplifier -

\[V_{DD} \]

\[\text{M3} \]

\[\text{M4} \]

\[V_{OUT} \]

\[V_G \]

\[V_G \]

\[V_{SS} \]

Exact small signal model -

Simplified small signal model using symmetry -

\[V_{GS1} = 0.5V_{dd} \text{ and } V_{GS2} = -0.5V_{dd} \]

CMOS DIFFERENTIAL AMPLIFIER

Unloaded Differential Transconductance Gain
\((R_L = 0) \)

\[i_{out}^* = \varepsilon_m V_{gs1} - \varepsilon_m V_{gs2} = \frac{\varepsilon_m}{1 + \varepsilon_m (G_{ds1} || G_{ds2})} V_{GS1} = \varepsilon_m V_{gs2} \]

If \(G_{ds1} || G_{ds2} \gg 1 \), \(\varepsilon_m = \varepsilon_m \), and \(\varepsilon_m = \varepsilon_m \), then

\[i_{out}^* = \varepsilon_m V_{gs1} - \varepsilon_m V_{gs2} = \varepsilon_m (V_{GS1} - V_{GS2}) = \varepsilon_m V_{dd} \]

or

\[i_{out}^* = \varepsilon_m V_{dd} = \sqrt{\frac{R_L W}{L}} V_{dd} \]

Unloaded Differential Voltage Gain
\((R_L = \infty) \)

\[V_{out} = \frac{\varepsilon_m (V_{GS1} + V_{GS2})}{\varepsilon_m + \varepsilon_m} V_{dd} = \frac{2}{(\lambda_N + \lambda_P)} \sqrt{\frac{R_L W}{L}} V_{dd} \]
Differential amplifier can be made using resistive and active load.

(i) **Differential amplifier using resistive load:**

![Resistive Load Circuit Diagram]

The voltage gain can be given as $A_v = \frac{g_m \times R_D}{2}$

The problem with resistive load has been discussed in previous topic. To overcome this we will use active load instead of resistive load.

(ii) **Differential amplifier using active load:**

![Active Load Circuit Diagram]

The voltage gain is given by $A_v = \frac{g_m}{g_{o2} + g_{o4}}$.
3. **Differential amplifier with current mirror:**

The current mirror load provides double-ended to single-ended conversion without suffering the loss of a factor of two in differential-mode gain (the common-mode gain is twice as large also, but still very small). It comes in a variety of versions (pnp, npn, nMOS, p-MOS); the examples below use p-channel MOSFETs in the mirror loading an nchannel common-source differential gain stage.

The active nature of the load doubles the current delivered to the load with differential-mode inputs, and while not sending any current to the load with common-mode inputs.

\[Av = gm1 (rds2 \parallel rds4) \]

One of the important use of diff-amp with current mirror is that it is very useful in removing noise from the circuit. Due to its ability to reject common mode signal it is use as noise remover in a circuit.
4. Source and sink

CHARACTERIZATION OF SOURCES & SINKS

1). Minimum voltage (v_{MIN}) across sink or source for which the current is no longer constant.
2). Output resistance which is a measure of the “flatness” of the current sink or source.

CMOS Current Sinks & Sources

$$v_{\text{MIN}} = v_{DS(SAT.)} = v_{\text{ON}}$$

where $v_{\text{ON}} = v_{GS} - v_{T}$
5. Current mirror

V.4 - CURRENT MIRRORS/AMPLIFIERS

What Is A Current Mirror/Amplifier?

Ideally,
\[i_O = A_I \cdot i_I \quad R_{in} = 0 \quad R_{out} = \infty \]

Graphical Characterization

INPUT

OUTPUT

TRANSFER
FPGA (Field Programmable Gate Array)

Overview and Design Considerations

Xilinx® Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable logic devices that leverage advanced CMOS manufacturing technologies, similar to other industry-leading processors and processor peripherals. Like processors and peripherals, Xilinx FPGAs are fully user programmable. For FPGAs, the program is called a *configuration bitstream*, which defines the FPGA's functionality. The bitstream loads into the FPGA at system power-up or upon demand by the system.

The process whereby the defining data is loaded or programmed into the FPGA is called *configuration*. Configuration is designed to be flexible to accommodate different application needs and, wherever possible, to leverage existing system resources to minimize system costs.

Similar to microprocessors, Xilinx FPGAs optionally load or boot themselves automatically from an external nonvolatile memory device. Alternatively, similar to microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or programmed by an external “smart agent”, such as a microprocessor, DSP processor, microcontroller, PC, or board tester. In either case, the configuration data path is either serial to minimize pin requirements or byte-wide for maximum performance or for easier interfaces to processors or to byte-wide Flash memory.

Similar to both processors and processor peripherals, Xilinx FPGAs can be reprogrammed, in system, on demand, an unlimited number of times. After configuration, the FPGA configuration bitstream is stored in highly robust CMOS configuration latches (CCLs).

Although CCLs are reprogrammable like SRAM memory, CCLs are designed primarily for data integrity, not for performance. The data stored in CCLs is written only during configuration and remains static unless changed by another configuration event.

This user guide provides both an introduction to the configuration options available to the user, and a detailed description of the configuration logic. This user guide includes the Extended Spartan-3A family, which includes the Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms. The user guide also includes the earlier Spartan-3 and Spartan-3E families. Together, these families are sometimes referred to as the Spartan-3 generation.

Most basic configuration features are similar between the families, and differences are noted where necessary.
Design Considerations

Before starting a new FPGA design, spend a few minutes to consider which FPGA configuration mode best matches your system requirements. Each configuration mode dedicates certain FPGA pins and may borrow others. Similarly, the configuration mode may place voltage restrictions on some FPGA I/O banks.

If you have already selected an FPGA configuration mode, feel free to jump to the relevant section in the user guide. Otherwise, please evaluate the following design considerations to understand the options available.

Will the FPGA load configuration data itself from external or internal memory or will an external processor/microcontroller download configuration data?

Spartan-3 generation FPGAs are designed for maximum flexibility. The FPGA either automatically loads itself with configuration data, like a processor, or alternatively, another external intelligent device like a processor or microcontroller can download the configuration data. It is your choice and Table 1-2 summarizes the available options.

The self-loading FPGA configuration modes, generically called Master modes, are available with either a serial or byte-wide data path as shown in Figure 1-1. The Master modes leverage various types of non-volatile memories to store the FPGA's configuration information, as shown in Table 1-1. In Master mode, the FPGA's configuration bit stream typically resides in non-volatile memory on the same board, generally external to the FPGA. The FPGA internally generates a configuration clock signal called CCLK and the FPGA controls the configuration process.

Spartan-3AN FPGAs optionally configure from internal In-System Flash (ISF) memory, as shown in Figure 1-1c. In this mode, the configuration memory and the control and data signals are inside the package. Spartan-3AN FPGAs also optionally support all the other Spartan-3A FPGA configuration modes, as well.
Figure 46: TQ144 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.

- **I/O**: Unrestricted, general-purpose user I/O
- **DUAL**: Configuration pin, plus possible user I/O
- **DECL**: User I/O or reference resistor input for bank
- **CONF**: Dedicated configuration pins
- **JTAG**: Dedicated JTAG port pins
- **VCC**: Internal core voltage supply (±1.2V)
- **VCCINT**: Auxiliary voltage supply (±2.5V)

Legend

- **VCC**: Output voltage supply for bank
- **VSS**: User I/O or input voltage reference for bank
- **VREF**: User I/O or input voltage reference for bank
- **VCCINT**: Internal core voltage supply (±1.2V)
- **VCCINT**: Auxiliary voltage supply (±2.5V)
Literature Survey

<table>
<thead>
<tr>
<th>Author</th>
<th>Publish in Year</th>
<th>Title</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yongian Tang</td>
<td>2004</td>
<td>A 10-bit 20-Msample’s 49mW CMOS pipelined A/D converter</td>
<td>Designed a 10 bit ADC made in 0.6μm double-poly double-metal CMOS process having 5V supply voltage and 49 mW of power consumption.</td>
</tr>
<tr>
<td>Hati M.K.</td>
<td>2011</td>
<td>Design of a low power, high speed complementary input folded regulator cascode OTA for a parallel pipeline ADC</td>
<td>Designed 10-bit ADC using OTA with 180 nm technology with 1.8V and power consumption is only 3.24 mW.</td>
</tr>
<tr>
<td>S. Hassan Mirhossein, Ahmad Ayahtoliabi</td>
<td>2012</td>
<td>Design a 10 bit 100 MHz pipelined ADC using RB-OTA in 90 nm CMOS technology</td>
<td>Designed a 10 bit ADC using OTA in 90 nm technology with 1V of bias voltage and power consumption of 14.4 mW.</td>
</tr>
<tr>
<td>A J Sowjanya, K1, D.S. Shylu2, Dr. D. Jackuline Moni3, Neetha C John4, Anita Antony5</td>
<td>2012</td>
<td>A Low Power Gain Boosted Fully Differential OTA for a 10bit pipelined ADC</td>
<td>Designed a 10 bit pipelined ADC using OTA with 1.8V power supply and 70 mW of power consumption.</td>
</tr>
</tbody>
</table>
Problem Statement

The reduction of power consumption is a crucial task for battery-operated applications. There are OTA based ADC’s which has been made with power consumption of approximately in some mW.

In high performance analog circuit, it is a challenging task to design a high performance CMOS OTA for use in Analog to Digital converter.

As we are dealing with high performance circuits, to meet these requirement, both accuracy and fast settling of system is needed, op-amp with high DC gain can satisfy this requirement, but still there are many aspects which leads to contradictory demands, as the intrinsic gain of devices is limited.

OTA is an op-amp without and output driver. It is capable of driving small capacitance loads. This make the OTA well suited for pipeline application.

The whole procedure is focused on the development of ultra-low power amplifier requiring low silicon area but being able to drive high capacitive loads.
Design and Analysis

Two-Stage Operational Amplifier Design

\[
\begin{align*}
\varepsilon_{m1} &= \varepsilon_{m2} = \varepsilon_{m1T} \varepsilon_{m6} = \varepsilon_{m1T} \varepsilon_{d12} + \varepsilon_{d4} = G_p \quad \text{and} \quad \varepsilon_{d6} + \varepsilon_{d7} = G_I \\
\text{Slew rate} \ SR &= \frac{I_5}{C_c} \\
\text{First-stage gain} \ A_{11} &= \frac{\varepsilon_{m1}}{\varepsilon_{d12} + \varepsilon_{d4}} = \frac{2\varepsilon_{m1}}{I_5(\lambda_2 + \lambda_4)} \\
\text{Second-stage gain} \ A_{12} &= \frac{\varepsilon_{m6}}{\varepsilon_{d6} + \varepsilon_{d7}} = \frac{\varepsilon_{m6}}{I_6(\lambda_6 + \lambda_7)} \\
\text{Gain-bandwidth} \ GB &= \frac{\varepsilon_{m1}}{C_c} \\
\text{Output pole} \ p_2 &= \frac{\varepsilon_{m6}}{C_L} \\
\text{RHP zero} \ z_1 &= \frac{\varepsilon_{m6}}{C_c} \\
\text{Positive CMR} \ V_{m(\text{max})} &= V_{DD} - \sqrt{\frac{I_5}{\beta_3}} - |V_{I03}(\text{max})| + V_{I1(\min)}
\end{align*}
\]
All transistors are in saturation for the above relationships.

The following design procedure assumes that specifications for the following parameters are given:

1. Gain at dc, $A_v(0)$
2. Gain-bandwidth, GB
3. Input common-mode range, $ICMR$
4. Load Capacitance, CL
5. Slew-rate, SR
6. Output voltage swing
7. Power dissipation.

Choose a device length to establish the channel-length modulation parameter

Design the compensation capacitor C_c. It was shown that placing the loading pole p_2 2.2 times higher than the GB permitted a 60° phase margin (assuming that the RHP zero z_1 is placed at or beyond ten times GB). This results in the following requirement for the minimum value for C_c.

$$C_c > 0.5 \times C_j$$

Next, determine the minimum value for the tail current I_5, based upon slew-rate requirements. Using Eq. (1), the value for I_5 is determined to be

$$I_5 = SR \cdot C_c$$

$$I_5 \geq 10 \left(\frac{V_{DD} + |V_{SS}|}{2 \cdot T_3} \right)$$
If the slew-rate specification is not given, then one can choose a value based upon settling time requirements. Determine a value that is roughly ten times faster than the settling-time specification, assuming that the output slews approximately one-half of the supply rail.

The value of I_5 resulting from this calculation can be changed later if need be. The aspect ratio of M3 can now be determined by using the requirement for positive input common-mode range. The following design equation for $(W/L)_3$ was derived from Eq. (7).

$$S_3 = \frac{I_5}{K_3'(V_{DD} - V_{in}(\text{max}) - |V_{T03}(\text{max}) + V_{T1}(\text{min})|)^2} \geq 1$$

If the value determined for $(W/L)_3$ is less than one, then it should be increased to a value that minimizes the product of W and L. This minimizes the area of the gate region, which in turn reduces the gate capacitance. This gate capacitance will affect a pole-zero pair which causes a small degradation in phase margin. Requirements for the transconductance of the input transistors can be determined from knowledge of C_C and GB. The transconductance gm_2 can be calculated using the following equation

$$\frac{gm_3}{2C_{gs3}} > 10GB.$$

The aspect ratio $(W/L)_1$ is directly obtainable from gm_1 as shown below

$$gm_1 = GB \cdot C_C \Rightarrow S_2 = \frac{gm_2}{K_2'I_5}$$

Enough information is now available to calculate the saturation voltage of transistor M5. Using the negative ICMR equation, calculate V_{DS5} using the following relationship derived from Eq. (8).

$$V_{DS5}(\text{sat}) = V_{in}(\text{min}) - V_{SS} - \frac{I_5}{\beta_1} - V_{T1}(\text{max}) \geq 100 \text{ mV}$$

If the value for V_{DS5} is less than about 100 mV then the possibility of a rather large $(W/L)_5$ may result. This may not be acceptable. If the value for V_{DS5} is less than zero, then the ICMR specification may be too stringent. To solve this problem, I_5 can be reduced or $(W/L)_1$ increased.
The effects of these changes must be accounted for in previous design steps. One must iterate until the desired result is achieved. With V_{DS5} determined, $(W/L)_{5}$ can be extracted using Eq. (9) in the following way

$$S_5 = \frac{2I_5}{K_{5}V_{DS5(sat)}^2}$$

For a phase margin of 60°, the location of the loading pole was assumed to be placed at 2.2 times GB. Based upon this assumption and the relationship for $|p_2|$ in Eq. (5), the transconductance g_{m6} can be determined using the following relationship

$$g_{m6} = 2.2g_{m2}(C_L/C_c)$$

Since S_3 is known as well as g_{m6} and g_{m3}, assuming balanced conditions,

$$S_6 = S_3\left(\frac{g_{m6}}{g_{m3}}\right)$$

can be calculated from the consideration of the “proper mirroring” of first-stage the current mirror load of Fig. 6.3-1. For accurate current mirroring, we want V_{SD3} to be equal to V_{SD4}. This will occur if V_{SG4} is equal to V_{SG6}. V_{SG4} will be equal to V_{SG6} if

$$I_6 = (S_6/S_4)I_4 = (S_6/S_4)(I_4/2)$$
Choose the larger of these two values for I_6 (Eq. 19 or Eq. 20). If the larger value is found in Eq (19), then $(W/L)_6$ must be increased to satisfy Eq. (20). If the larger value is found in Eq. (20), then no other adjustments must be made. One also should check the power dissipation requirements since I_6 will most likely determine the majority of the power dissipation. The device size of M_7 can be determined from the balance equation given below

$$\delta V_I = \frac{(I_{ds} / I_2)}{V_{gs}}$$

The first-cut design of all W/L ratios are now complete. Fig. 6.3-2 illustrates the above design procedure showing the various design relationships and where they apply in the two-stage CMOS op amp.

$$A_v = \frac{2g_m 2g_{m0}}{I_2(\lambda_2 + \lambda_3)I_6(\lambda_6 + \lambda_7)}$$

If the gain is too low, a number of things can be adjusted. The best way to do this is to use the table below, which shows the effects of various device sizes and currents on the different parameters generally specified. Each adjustment may require another pass through this design procedure in order to insure that all specifications have been met. Below table summarizes the above design procedure.
Fig: Illustration of the design relationships and the circuit for a two-stage CMOS op amp. At this point in the design procedure, the total amplifier gain must be checked against the Specifications.
Dependencies of device performance on various parameters

<table>
<thead>
<tr>
<th>Drain Current</th>
<th>M1 and M2</th>
<th>M3 and M4</th>
<th>Inverter Load</th>
<th>Inverter Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_5</td>
<td>W/L</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>Increase DC</td>
<td>$\downarrow^{1/2}$</td>
<td>$\downarrow^{1/2}$</td>
<td>$\uparrow^{1/2}$</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Gain Increase GB</td>
<td>$\uparrow^{1/2}$</td>
<td>$\uparrow^{1/2}$</td>
<td>$\uparrow^{1/2}$</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Increase RHP</td>
<td>$\uparrow^{1/2}$</td>
<td>$\uparrow^{1/2}$</td>
<td>$\uparrow^{1/2}$</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Zero Increase Slew</td>
<td>\uparrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
<tr>
<td>Rate Increase C_L</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
</tbody>
</table>
The 180 nanometer (180 nm) process refers to the level of semiconductor process technology that was reached in the 1999-2000 timeframe by most leading semiconductor companies, like Intel, Texas Instruments, IBM, and TSMC.

The origin of the 180 nm value is historical, as it reflects a trend of 70% scaling every 2–3 years. The naming is formally determined by the International Technology Roadmap for Semiconductors (ITRS).

Some of the CPU’s manufactured with this process include Interl Coppermine family of Pentium III processors. This was the first technology using a gate length shorter than that of light used for lithography (which has a minimum of 193nm).

Some more recent microprocessors and microcontrollers (e.g. PIC) are using this technology because it is typically low cost and does not require upgrading of existing equipment.
Application

A/D and D/A Converters in Data Systems

CHARACTERIZATION OF ANALOG TO DIGITAL CONVERTERS

General A/D Converter Block Diagram

A/D Converter Types
1.) Serial.
2.) Medium speed.
3.) High speed and high performance.
4.) New converters and techniques.

Characterization of A/D Converters
Ideal Input-Output Characteristics for a 3-bit ADC
Non-ideal Characteristics of A/D Converters
Sampled Data Aspect of ADC’s

\[T_{\text{sample}} = t_s + t_a \]

\[t_a = \text{acquisition time} \]
\[t_s = \text{settling time} \]
\[t_{\text{ADC}} = \text{time for ADC to convert analog input to digital word.} \]

\[\text{Conversion time} = t_s + t_a + t_{\text{ADC}}. \]

\[\text{Noise} = (kT/C) V^2 \text{ (rms)} \]
X.7 - SERIAL A/D CONVERTERS

Single-Slope A/D Converter

- Simplicity of operation
- Subject to error in the ramp generator
- Long conversion times
Dual Slope, A/D Converter

Block Diagram:

Operation:

1.) Initially $v_{int} = 0$ and v_{in} is sampled and held ($V_{in^+} > 0$).

2.) Reset by integrating until $v_{int}(0) = V_{th}$.

3.) Integrate V_{in^+} for N_{ref} clock cycles to get,

$$v_{int}(1) = v_{int}(N_{ref}T) = k \int_0^{V_{in^+}} \frac{d}{dt} + v_{int}(0) = kN_{ref}TV_{in^+} + V_{th}$$

4.) The Carry Output on the counter is used to switch the integrator from V_{in^+} to $-V_{REF}$.
Integrate until v_{int} is equal to V_{th} resulting in

$$v_{int}(1 + t_1) = v_{int}(1) + \int_{t_1}^{N_{ref}T} V_{REF} dt = V_{th}$$

$\therefore kN_{ref} TV_{in^+} + V_{th} - kV_{REF}N_{out} = V_{th}$

$$\frac{N_{out}}{N_{ref}} = \frac{V_{in^+}}{V_{REF}}$$
Waveform of the Dual-Slope A/D Converter

1) Very accurate method of A/D conversion.
2) Requires a long time -2(2N) T
A Voltage-Charge Scaling Successive Approximation ADC

Operation.

1.) With S_F closed, the bottom plates of all capacitors are connected through switch S_B to V_{in}. (Automatically accounts for voltage offsets).

2.) After S_F is opened, a successive approximation search among the resistor string taps to find the resistor segment in which the stored sample lies.

3.) Buses A and B are then connected across this segment and the capacitor bottom plates are switched in a successive approximation sequence until the comparator input voltage converges back to the threshold voltage.

Capable of 12-bit monotonic conversion with a DL of ±0.5LSB within 50μs.
Music recording:
Analog-to-digital converters are integral to current music reproduction technology.

Digital signal processing:
People must use ADCs to process, store, or transport virtually any analog signal in digital form.

Scientific instruments:
Digital imaging systems commonly use analog-to-digital converters in digitizing pixels.
Results
Verilog code

// DSCH 3.5

// C:\Users\dsd\Desktop\diff.sch

module diff(in2,in1,out2);

input in2,in1;
output out2;
wire w5;

pmos #(1) pmos_1(out2,vdd,w5); // 0.5u 0.05u
pmos #(2) pmos_2(w5,vdd,w5); // 0.5u 0.05u
nmos #(1) nmos_3(out2,vss,in2); // 0.3u 0.05u
nmos #(2) nmos_4(w5,vss,in1); // 0.3u 0.05u
endmodule

// Simulation parameters in Verilog Format

always

#200 in2=~in2;

#400 in1=~in1;

// Simulation parameters

// in2 CLK 1 1

// in1 CLK 2 2
Conclusion

Designing a low power ADC using OP-AMP in Microwind using 180nm technology. It will have supply voltage of 1.8V and power consumption of around 35 uW. It will have variance of approximately around 10mW. The OTA adds controllability to the various integrated circuit commonly implemented with conventional OP-AMP. The above OTA has high input impedance and low output impedance, and its size is considerably reduce because there is no need of another circuit for impedance matching. The power consumption of the OTA is also reduced considerably.
DESIGN AND ANALYSIS OF MUTI-STAGE OTA & ITS APPLICATION USING 180 nm TECHNOLOGY

A-I-Kalsekar Technical Campus, Electronics and Telecommunication Department, New Panvel

Abstract—The operational transconductance amplifier (OTA) is an amplifier whose differential input voltage produces an output current. Thus, it is a voltage controlled current source (VCCS). There is usually an additional input for a current to control the amplifier’s trans conductance. The OTA is similar to a standard operational amplifier in that it has a high impedance differential input stage and that it may be used with negative feedback. Operational Transconductance Amplifier (OTA) is a Op-amp without an output driver. It is capable of driving small capacitive load. This makes the OTA well suited for pipeline application. The design is based on a fully differential, 1.8V OTA to be used in a pipeline ADC which will have power consumption of about 100mW and will be made in 180nm technology.

Software Tools Used
Xylinx, Microwind & DSCH 3.5.

Keywords—OTA, VLSI, DIFF AMP, FPGA.

I. INTRODUCTION
In high performance analog circuit, it is a very challenging task to design a high performance complementary metal oxide semi-conductor, which is used in either ADC or DAC [1]-[2]. As we are dealing with high performance circuit, to meet these requirement both accuracy and fast settling of system is needed, OP-Amp with high DC gain frequency can satisfy both of these requirement [3]. Although a Op-amp with high DC gain satisfy these requirement, but still in many aspects which leads to complementary demands, as the intrinsic gain of many devices are limited.

OTA is an Op-amp without an output driver. It is capable of driving small capacitive load. These makes OTA a well suitable for pipeline application. The whole procedure is focused on the development of ultra-low power amplifier requiring low silicon area but been able to drive high capacitive load.

Our project consist of three major parts:

II. DESIGN DESCRIPTION
The Block diagram of the project is mentioned below in fig-1.

Fig. 1: Block Diagram of Basic OTA.

As from the Block diagram above, it is pretty much evident that the project is distributed into the following major sections,

1. Active load:- when resistor is replaced by an active device which acts as a resistor then this is called active load.
Besides power saving there is additional advantage, because today very large number of circuits are actually in integrated circuit form, in integrated circuits remember one thing that creating one for example, in a unit one mosfet and one resistance is more expensive and it will take more steps for fabrication then two resistors. That means, if we can replace this resistance by a mosfet then the circuit will take two mosfets, but making of two mosfets are in fact, just multiplying in some component is much more economical and convenient in an integrated circuit rather than creating a different element all together resistance and mosfet two are very different elements and two mosfets they are belong to the same category and hence their construction is very simple and more economical.

MOS ACTIVE RESISTORS

Realizations

\[
\text{When the drain is connected to the gate, the transistor is always saturated.}
\]

\[
v_{DS} = v_{GS} - v_T
\]

\[
v = v_{DS} = v_{GS} - v_T
\]

\[
v = v_{DS} = v_{GS} - v_T + \sqrt{2v_T}\]

Fig. 2: Characteristics of Active Load

2. Differential Amplifier

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs \(V_{in}^-\) and \(V_{in}^+\) and one output \(V_{out}\) in which the output is ideally proportional to the difference between the two voltages

\[
V_{out} = A(V_{in}^+ - V_{in}^-)
\]

where \(A\) is the gain of the amplifier.

The differential pair (differential amplifier) configuration

Widely used building block in analog integrated circuit design

- Performance depends critically on the matching of the devices
- Utilizes more components than single-ended circuits
- Well suited for IC fabrication

Advantages of using differential pair

- Less sensitive to noise and interference than single-ended circuits
- Bias is provided without the need for bypass and coupling capacitors.

3. Current mirror.

III. FPGA (FIELD PROGRAMMABLE GATE ARRAY)

Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable logic devices that leverage advanced CMOS manufacturing technologies, similar to
other industry-leading processors and processor peripherals. Like processors and peripherals, Xilinx FPGAs are fully user programmable. For FPGAs, the program is called a configuration bit stream, which defines the FPGA's functionality. The bit stream loads into the FPGA at system power-up or upon demand by the system. The process whereby the defining data is loaded or programmed into the FPGA is called configuration. Configuration is designed to be flexible to accommodate different application needs and, wherever possible, to leverage existing system resources to minimize system costs. Similar to microprocessors, Xilinx FPGAs optionally load or boot themselves automatically from an external non-volatile memory device. Alternatively, similar to microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or Programmed by an external "smart agent", such as a microprocessor, DSP processor, microcontroller, PC, or board tester. In either case, the configuration data path is either serial to minimize pin requirements or byte-wide for maximum performance or for easier interfaces to processors or to byte-wide Flash memory. Similar to both processors and processor peripherals, Xilinx FPGAs can be reprogrammed, in system, on demand, an unlimited number of times. After configuration, the FPGA configuration bitstream is stored in highly robust CMOS configuration latches (CCLs). Although CCLs are reprogrammable like SRAM memory, CCLs are designed primarily for data integrity, not for performance. The data stored in CCLs is written only during configuration and remains static unless changed by another configuration event.

This user guide provides both an introduction to the configuration options available to the user, and a detailed description of the configuration logic. This user guide includes the Extended Spartan-3A family, which includes the Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms. The user guide also includes the earlier Spartan-3 and Spartan-3E families. Together, these families are sometimes referred to as the Spartan-3 generation. Most basic configuration features are similar between the families, and differences are noted where necessary.

IV. SOFTWARE

Microwind is truly integrated software encompassing IC designs from concept to completion, enabling chip designer to design beyond their imagination. Microwind integrates traditionally separated frontend and backend chip design into an integrated flow, accelerating the design cycle and reducing the design complexities. This software allows the designer to simulate and design an integrated circuit at physical description level. Microwind unifies schematic entry, pattern based simulator, SPICE extraction of schematic Verilog extractor, layout compilation, on layout mix-signal circuit simulation, cross sectional and 3D viewer, netlist extraction, to deliver unmatched design performance & productivity.

V. RESULTS

Simulation which were done on softwares like DSCH and microwind, the results of the Diff Amp are shown below:

1. Circuit Diagram of Diff Amp on DSCH 3.5.
VI. CONCLUSIONS

Design a low power ADC using OTA in Microwind using 180nm technology. It will have supply voltage of 1.8V and power consumption of around 100uW. It will have variance of approximately around 10mW.

VII. ACKNOWLEDGEMENT

I am grateful to Prof. Afzal Shaikh and I acknowledge with gratitude to my supervisor Prof. Afzal Shaikh, Department of Electronics & Telecommunication Engineering, and all staff members for his innovative thinking, continuous guidance, genius role and encouragement throughout the whole project period.

REFERENCES

4. Alfio Dario Grasso, Member, IEEE, Davide Marano, Gaetano Palumbo, Fellow, IEEE, and Salvatore Pennisi, Senior Member, IEEE,” Design Methodology of Subthreshold Three-Stage CMOS OTAs Suitable for Ultra-Low-Power Low-Area and High Driving Capability”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 6, June 2015
5. Jong-Kwan Woo, Member, IEEE, Hyunjoong Lee, Member, IEEE, Hwi-Cheol Kim, Deog-Kyoon Jeong, Senior Member, IEEE, and Suhwan Kim, Senior Member, IEEE,” 1.2 V 10-bit 75 MS/s Pipelined ADC With Phase-Dependent Gain-Transition CDS”, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, March 2014
Reference

7. J. Mahattanakul, Member, IEEE, “Design Procedure for Two-Stage CMOS Operational Amplifiers Employing Current Buffer”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 52, NO. 11, NOVEMBER 2005

10. Alfio Dario Grasso, Member, IEEE, Davide Marano, Gaetano Palumbo, Fellow, IEEE, and Salvatore Pennisi, Senior Member, IEEE,” Design Methodology of Subthreshold Three-Stage CMOS OTAs Suitable for Ultra-Low-Power Low-Area and High Driving Capability”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 6, JUNE 2015

11. Jong-Kwan Woo, Member, IEEE, Hyunjoong Lee, Member, IEEE, Hwi-Cheol Kim, Deog-Kyoon Jeong, Senior Member, IEEE, and Suhwan Kim, Senior Member, IEEE,” 1.2 V 10-bit 75 MS/s Pipelined ADC With Phase-Dependent Gain-Transition CDS”, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014
DECLARATION

We hereby declare that the project entitled “DESIGN AND ANALYSIS OF MULTI-STAGE OTA & ITS APPLICATION USING 180nm TECHNOLOGY” submitted for the B.E Degree is our original work and the project has not formed the basis for the award of any degree, associateship, fellowship or any other similar titles.

Signature of the Students:
Mr. SHARIK ABDUL SALIM PATEL (12ET44)
Mr. IRFAN ABDUL KADER SHAIKH (12ET48)
Mr. MOHAMMED BILAL ABRAR SHAIKH (12ET51)
Mr. SHEMNA NEEHAL (12ET57)

Place:
Date:
CERTIFICATE

This is to certify that the project entitled “DESIGN AND ANALYSIS OF MULTI-STAGE OTA & ITS APPLICATION USING 180nm TECHNOLOGY” is the bonafide work carried out by Sharik, Irfan, Mohammedbilal, Neehal students of B.E, KALSEKAR Technical Campus, Panvel, during the year 2014, in partial fulfillment of the requirements for the award of the Degree of B.E EXTC and that the project has not formed the basis for the award previously of any degree, diploma, associateship, fellowship or any other similar title.

(Prof. Mujib Tamboli)
H.O.D

(Prof. Afzal Shaikh)
Asst. Prof.

(External)
ABSTRACT

The operational transconductance amplifier (OTA) is an amplifier whose differential input voltage produces an output current. Thus, it is a voltage controlled current source (VCCS). There is usually an additional input for a current to control the amplifier's transconductance. The OTA is similar to a standard operational amplifier in that it has a high impedance differential input stage and that it may be used with negative feedback. Operational Transconductance Amplifier (OTA) is a Op-amp without an output driver. It is capable of driving small capacitive load. This makes the OTA well suited for pipeline application. We are designing a fully differential, 1.8V OTA to be used in a pipeline ADC which will have power consumption of about 100mW and will be made in 180nm technology.
ACKNOWLEDGEMENT

We have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and institute. We would like to extend our sincere thanks to all of them.

We are highly indebted to (Prof. Afzal Shaikh) for his guidance and constant supervision as well as for providing necessary information regarding the project & also for his support in completing the project. We would like to express our gratitude towards our parents & members of (AIKTC) for their kind co-operation and encouragement which help us in completion of this project.

Our thanks and appreciations also go to our colleague in developing the project and people who have willingly helped us out with their abilities.
Table of Content

PROJECT REPORT APPROVAL FOR B.E.

DECLARATION__i

ABSTRACT__i

ACKNOWLEDGEMENT___iv

1. INTRODUCTION__1

2. LITERATURE SURVEY__22

3. PROBLEM STATEMENT__23

4. DESIGN AND ANALYSIS__24

5. DESIGN AND TECHNOLOGY__31

6. APPLICATION__32

7. RESULT___41

8. CONCLUSION__45

9. PAPER PUBLISH IN IETE CYNOSURE NCCEEE-2016___________________46

10. REFERENCE__50